SYNTHESIS OF TETRAHYDROAZOCINES AND DIHYDRO-2H-THIOCINS VIA RING ENLARGEMENT

D N Reinhoudt and C G Kouwenhoven

KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM

(Shell Research B V.)

(Received in UK 10 July 1973, accepted for publication 8 August 1973)

Previously we described the synthesis of thispins from 3-pyrrolidinothiophenes via ring enlargement by two carbon atoms^{1,2}. Recent papers on the preparation of eight-membered hetero-cycles³ and reactions of enamines with cyclopropenones⁴ prompted us to report our findings in this field.

The synthesis of the compounds dealt with here - tetrahydroazocines and dihydro-2H-thiocins - was approached in two different ways, viz. via ring enlargement of enamines of six-membered heterocyclic ketones by two carbon atoms and via the reaction of enamines of five-membered ring ketones with cyclopropenones⁵.

4-Methyl-1-pyrrolidino-4-azacyclohex-1-ene $(\underline{Ia})^6$ and 1-piperidino-4-thiacyclohex-1-ene $(\underline{Ib})^7$ reacted with one equivalent of dimethyl acetylenedicarboxylate at room temperature to yield the corresponding 3-heterobicyclo[4 2 0]-oct-7-enes (\underline{II}) via a [2+2] cycloaddition Without being isolated these compounds were converted at 100 °C (2 h/dioxane) into their monocyclic isomers Compound \underline{IIa} , the 7,8-bis(methoxycarbonyl)-3-methyl-6-pyrrolidino-3-azabicyclo[4.2.0]oct-7-ene, afforded a 1,2,3,8-tetrahydroazocine derivative [\underline{IIIa} , m p 124-125 5 °C, δ_{H_7} 6 57 (dd, $J_1 = 7$ 5 Hz and $J_2 = 8$ 5 Hz)], formed by ring opening of the cyclobutene molety, in 50 % overall yield Compound \underline{IIb} gave two isomeric 3,8-dihydro-2H-thiocins, \underline{IIIb} [m p 184-185 °C, δ_{H_7} 6 76 ppm (dd, $J_1 = 6$ Hz and $J_2 = 8$ Hz)] and \underline{IV} [m p. 101-102 °C, δ_{H_7} 4 95 ppm (dd, $J_1 = 7$ 5 Hz and $J_2 = 8$ 5 Hz)], in overall yields of 20 and 40 %, respectively A separate experiment showed that these two isomers were not interconvertible under the prevailing reaction conditions Therefore, we conclude that \underline{IV} is formed by a 1,5-hydrogen shift concurrent with the ring opening step⁸

• Upon acid-catalysed hydrolysis the two different 3,8-dihydro-2H-thiocins yielded the same product \underline{V} (<u>IIIb</u>, OH replaces NR'R") Obviously, under these conditions \underline{IV} , or the corresponding enol, isomerizes to the thermodynamically more stable isomer

Our second approach to thiodin derivatives was based on the [2+2] reaction of simple enamines with diphenylcyclopropenone (<u>VI</u>), as reported by Ciabattoni and Berchtold⁵ Under the conditions escribed in reference 5 (refluxing benzene/16 h) 2-methyl-3-pyrrolidino-2,5-dihydrothiophene (<u>VIIa</u>) eacted with one equivalent of <u>VI</u> to yield a mixture of three (1 1) addition products 3,3-Dimethyl--pyrrolidino-2,3-dihydrothiophene (<u>VIIb</u>) reacted far more readily (at room temperature/16 h) giving single 1 1 adduct in 90 % yield

NR'R" = PYRROLIDINO AND R = C6H5

No 39

Surprisingly, none of the reaction products were thiodins. This was concluded from their stability in acidic solutions. In compounds of type <u>VIII</u> the 1,4-dienamine-3-one group would hydrolyse rapidly⁹ On the basis of spectral data we finally assigned structure <u>IX</u> to the major products¹⁰ and structure <u>X</u> to the by-products formed in the reaction with <u>VIIa</u>¹¹. The conversion of <u>VII</u> into <u>IX</u> can be rationalized as an insertion of the cyclopropenone into the C-N bond of the enamine, a reaction type that had not been reported so far for enamines

While this work was in progress Dreiding et al ^{4a} showed that the original structural assignments for the adducts of cyclopropenones with enamines were incorrect. They, too, found that cyclopropenone had been inserted into the C-N bond of the enamine. Their suggestion that the reaction proceeds via a [3+3] cycloaddition to give an "acylide" which subsequently rearranges to an amide found support when Eicher and Bohm^{4b} succeeded in isolating such an "acylide"

We assume that the reactions of the type reported here also involve the formation of an "acylic e g <u>XIa</u> in the reaction between <u>VI</u> and <u>VIIa</u> Subsequent rearrangement of <u>XI</u> in two different ways explains the formation of both <u>IXa</u> and <u>X</u>

NR'R" = PYRROLIDINO AND R = C.H.

The high reactivity of <u>VIIb</u> compared to that of <u>VIIa</u> can now be attributed to the larger electron density at C_{β} , resulting from the stabilization of the partly negative charge by the adjacent sulfur atom A similar difference in reactivity was observed in the reactions of <u>VIIa</u> and <u>b</u> with acetylenes¹

REFERENCES

1	D N Reinhoudt and C G Leliveld, <u>Tetrahedron Letters</u> <u>1972</u> , 3119
2	D N Reinhoudt and C G Kouwenhoven, J Chem Soc Chem Comm <u>1972</u> , 1232 and 1233
3	a G Markl and H Baler, Tetrahedron Letters 1972, 4439
	b P G Lehman, <u>Tetrahedron Letters 1972</u> , 4863
4	a V Bilinski, M A Steinfels and A S Dreiding, <u>Helv Chim Acta 55</u> , 1075 (1972).
	b T Eicher and S Bohm, <u>Tetrahedron Letters</u> <u>1972</u> , 2603 and 3965
	c M H Rosen, J Fengler and G Bonet, <u>Tetrahedron Letters</u> <u>1973</u> , 949
5	J Clabattoni and G A Berchtold, <u>J Org Chem</u> 31 , 1336 (1966)
6	R Tschesche and G Snatzke, <u>Chem Ber 90</u> , 579 (1957)
7	L N Kakurina, N F Kucherova and V A Zagorevskii, <u>J Org Chem USSR</u> <u>1965</u> , 1118
8	Only in one other case has the formation of such an "abnormal" reaction product been observe
	viz in the ring opening of a 1-morpholinobenzo[c]bicyclo[3 2 0]hept-7-ene
	[G.A Berchtold and G.F. Uhlig, J Org Chem 28, 1459 (1963)].
9	M. Franck-Neumann, <u>Tetrahedron Letters</u> <u>1966</u> , 341
10	<u>IXa</u> m p 197-198 °C, yield 15 %, δ _{Hvinyl} 5 78 ppm (s), v _{c=0} 1615 cm ⁻¹ , M,M-70 and M-98
	<u>IXb</u> m p 155-157 °C, yield 90 %, $\delta_{H_{vinyl}}$ 5 91 ppm (s), $v_{c=0}$ 1620 cm ⁻¹ , M,M-70 and M-98
1	$\underline{\underline{Xa}}$ m p 115-116 5 °C, yield 5 %, $v_{c=0}$ 1695 cm ⁻¹ , $\delta_{H_{\rm H}}$ 3 90 and 3 50 ppm (J _{AB} = 9 Hz),
	$\delta_{\rm H_{5}}$ 2 48 ppm (J _{BC} = 12 Hz)
	<u>Xb</u> m.p 113-115 °C, yield 2 %, $v_{c=0}$ 1692 cm ⁻¹ , $\delta_{H_{l_1}}$ 4.07 and 3 10 ppm (J _{AB} = 6 5 Hz),
	$\delta_{\rm H_5}$ 2 54 ppm (J _{BC} = 12 Hz)